Conventional Methods of Resource / Reserve Estimation

Conventional Methods of Resource / Reserve Estimation

Areas of Study: Mining | Exploration and Geology

Qualifies for CMS

Premium Peer-Reviewed

Qualifies for Certification

This course provides comprehensive coverage of the empirical methods of mineral reserve estimation and their application in the contexts of ore estimation, mine planning and grade control. The course provides a basis for integrating and balancing these functions so as to achieve an efficient mining operation. *** This is a premium course which has been peer-reviewed by a committee appointed by the Canadian Institute of Mining, Metallurgy and Petroleum (CIM) and the Society for Mining, Metallurgy and Exploration (SME).


Online Course Online Courses

Enroll for Access to All Online Courses

Enrollees have access to all self-paced online courses.

Certification available for Not Available
  • Audience Level:
  • Professional
  • Enrollment:
  • Required
  • Duration:
  • 18 hours

Course Summary


The investment necessary to start a mine is of the order of 10's to 100's of millions of dollars. In order for the investment to be profitable, the potential product in the ground must be present in adequate quantities and quality to justify a decision to invest. Mining and processing systems used to extract the products must then operate so as to produce revenue to offset the planned investment and to provide an acceptable profit. Clearly, all technological and financial decisions regarding planned production are built on an understanding of the mineral assets available.

Thus, the estimation of grade and location of material in the ground (in situ resources) must be known with an acceptable degree of confidence. This is especially true of certain large, low grade deposits for which grade is only slightly above minimum profitable levels, and for some precious metal deposits where only a small percentage of mineralized ground can be mined at a profit. Mining profits are strongly leveraged to product price and to realized grade of material mined. A small difference between planned (estimated) and realized production grade, or a small change in metal price, can have a large impact on mine profitability.

The three undertakings, ore estimation, mine planning and grade control, are complementary in an efficient mining operation and are natural progressions one to another. The integration of these three endeavors is important because the grade control system must balance with the ore reserve as well as with the final products of the operating plant, and both estimation and grade control are influenced by planned operational procedures. If this balance is not achieved then the original investment may be in jeopardy. Reappraisals of mineral inventories can be necessary many times both prior to and during the life of a mine.

Resource/reserve estimation procedures commonly are considered in two categories, empirical and geostatistical. This course is confined to the principal empirical methods of estimation.

Course Content

The principal topics covered include:

  • Essential Concepts, Geological Continuity, Value Continuity
  • Dilution, Regionalized Variables, Accuracy and Precision, Block Estimation
  • Ore/Waste Boundaries, Conditional Bias, Cross Validation, Systematic Approach
  • Sectional Methods, Polygonal and Triangular Methods, Inverse Distance and Contouring
The course comprises 16 working sessions, 5 exercise sessions, numerous figures and supporting materials, and 4 interactive review sessions designed to confirm the learning objectives. Course duration is equivalent to approximately 18 hours of viewing content.

Learning Outcomes

  • Discuss the essential concepts of mineral reserve estimation using empirical methods, including the concepts of geological continuity and value continuity.
  • Discuss the effects of dilution, regionalized variables, accuracy and precision, ore/waste boundaries, and conditional bias on mineral reserve estimation.
  • Discuss the requirements of block estimation, the advantages of a systematic approach, and use of cross-validation.
  • Discuss empirical methods of mineral reserve estimation, including sectional methods, polygonal and triangular methods, and inverse distance and contouring methods.
  • Apply the knowledge gained to understanding, reviewing, and performing mineral reserve estimations.

Recommended Background

  • A degree in geology, mining or related discipline.
  • An understanding of the basic principles and methods of statistics.
  • An understanding of the basic principles of geostatistical semi-variograms.

Alastair J. Sinclair

Alastair J. Sinclair obtained his B.A.Sc. and M.A.Sc. degrees in geological engineering from the University of Toronto (1957 and 1958) and a Ph.D. in Economic Geology from the University of British Columbia (1964). From 1962 to 1964 he taught in the Dept. of Geology, University of Washington, Seattle; and from 1964 to 1998 taught at the University of British Columbia.

In addition to teaching at UBC he was Head of the Department of Geological Sciences (1985-1990) and Director of Geological Engineering (1991-1998). He is presently Professor Emeritus in geological engineering at the University of British Columbia. For many years he taught courses in Economic Geology, Mineral Inventory Estimation and Mineralography and Ore Microscopy. His research activities have focused on Mineral Exploration Data Analysis, Resource Estimation of Mineral Deposits and Quality Control Aspects of Resource Evaluation.

He has presented a wide range of short courses for mining companies and professional organizations and has consulted widely for the international mining industry; he continues to be active in these fields.